

VITUS-Fi Sistema de Clavos para Peroné

Asesor clínico

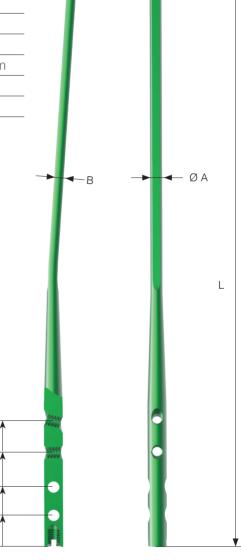
Prof. Dr. h. c. Edgar Mayr Director médico, Clínica de Traumatología, Ortopedia, Cirugía Plástica y de la Mano Hospital clínico Augsburg

Índice

Introducción	Especificaciones del producto		
	Indicación	2	
Técnica quirúrgica	Abordaje	3	
	Punto de entrada del clavo	3	
	Apertura del espacio medular	3	
	Montaje del arco de inserción	5	
	Inserción del clavo	5	
	Atornilladura A/P	6	
	Reducción de la fractura	7	
	Atornilladura lateral	7	
	Colocación del tornillo de cierre	7	
	Extracción del clavo	8	
Información del producto	Implantes	9	
	Instrumental	10	
	Información de seguridad sobre la RM	12	

Nota:

La técnica quirúrgica descrita a continuación representa el protocolo quirúrgico habitualmente seleccionado por el asesor clínico. No obstante, cada cirujano deberá decidir por sí mismo qué procedimiento ofrece las mejores perspectivas de éxito para cada caso individual.



Introducción

Especificación del producto

El sistema de clavos peroneos Marquardt *VITUS-Fi* sirve para la fijación estable y el tratamiento cuidadoso con los tejidos blandos de fracturas del peroné distales.

	Clavo para peroné 3.0 mm	Clavo para peroné 3.6 mm
Diámetro (A)	Ø 3.8 mm	Ø 4.4 mm
Anchura (B)	3.0 mm	3.6 mm
Longitud (L)	110, 145, 180 mm	110, 145, 180 mm
Color	verde	azul
Material	Ti6Al4V	Ti6Al4V

Arandela modular

La arandela modular proporciona una transmisión de fuerzas segura en unión continua a la cortical. Así se garantiza una fijación de los fragmentos con distribución de la presión.

Indicación

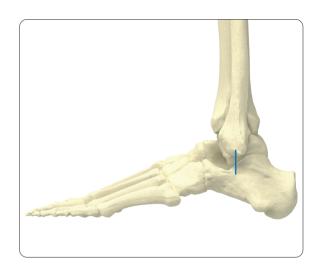
- Fracturas distales de la diáfisis del peroné en el marco de una fractura de la pierna.
- Fracturas del peroné con desplazamiento ligero a moderado en el marco de una fractura superior de la articulación del tobillo

40.0 mm

30.0 mm

19.0 mm

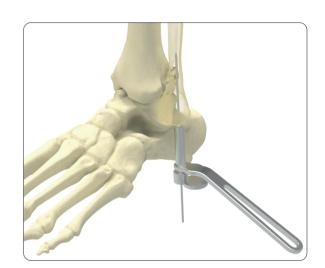
10.0 mm


0 mm

▶ Técnica quirúrgica

Abordaje

- El abordaje se lleva a cabo a través de una incisión de 1 a 2 cm desde la punta del peroné hacia distal.
- A continuación, en caso necesario, se reduce la fractura con pinzas de reducción a través de incisiones puntuales.

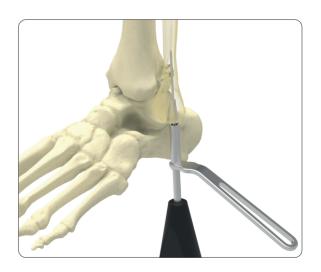


Punto de entrada del clavo

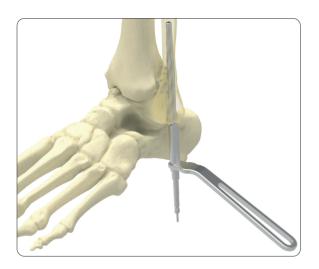
Instrumental

REF 11.90018.150 Aguja de Kirschner Ø 1.8 mm, L 150 mm REF 09.20310.245 Vaina de protección tisular 8.0/7.0 VITUS-Fi REF 09.20310.246 Casquillo reductor 6.0/2.0 VITUS-Fi

- En primer lugar, se coloca la vaina de protección tisular sobre la punta del peroné junto con el casquillo reductor.
- El peroné se perfora con la aguja de Kirschner a través del casquillo reductor, hasta colocarla en el espacio medular del fragmento proximal.
- Control radioscópico de la aguja de Kirschner en proyección a. p. y lateral.
- A continuación, se retira el casquillo reductor.



Apertura del espacio medular


Instrumental

REF 09.20310.401 Lezna, canulada Ø 2.0 mm

 Apertura del espacio medular con la lezna canulada sobre la aguja de Kirschner (opcional).

Taladrado

Instrumental

REF 09.20310.220 Fresa medular Ø 6.1 mm VITUS-Fi

- Taladrar hasta el canal medular en el fragmento distal con la fresa medular de Ø 6.1 mm, con tope sobre la aguja de Kirschner, utilizando la vaina de protección tisular.
- Taladrar con la fresa medular hasta hacer tope con la vaina de protección tisular.
- A continuación, se retira la fresa medular y la aguja de Kirschner.

Ampliar el espacio medular del fragmento proximal Instrumental

REF 09.20310.230 Fresa medular Ø 3.1 mm VITUS-Fi REF 09.20310.240 Fresa medular Ø 3.7 mm VITUS-Fi

- Introducir la fresa medular de Ø 3.1 mm o de Ø 3.7 mm a través de la vaina de protección tisular en el fragmento distal y desplazarla al fragmento proximal.
- Taladrar hasta el espacio medular del fragmento proximal.
- Para el clavo para peroné de 3.0 mm se utiliza la fresa medular de Ø 3.1 mm (marca verde). Con el clavo para peroné de 3.6 mm se utiliza la fresa medular de Ø 3.7 mm (marca azul).
- La profundidad de taladrado corresponde a la longitud prevista del clavo. Para ello se debe tener en cuenta la escala.

Nota:

En caso necesario, al ampliar el espacio medular se debe sujetar la fractura reducida con las pinzas de reducción.

Montaje del arco de inserción

Instrumental

REF 09.20310.010 Brazo de acoplamiento VITUS-Fi
REF 09.20310.015 Módulo de inserción VITUS-Fi
REF 09.20310.020 Aditamento para módulo de inserción VITUS-Fi
REF 09.20310.030 Tornillo adaptador VITUS-Fi
REF 09.20310.035 Tornillo de conexión VITUS-Fi
REF 14.30060.165 Llave de pipa, hexagonal 3.5 mm

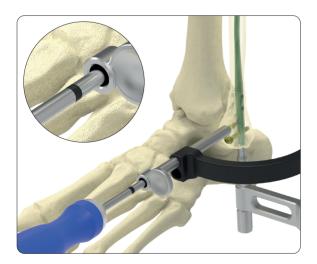
- En primer lugar, se monta el módulo de inserción con el brazo de acoplamiento por medio del tornillo de conexión.
- A continuación, también se fija con el tornillo de conexión el aditamento izquierdo/derecho para módulo de inserción al módulo de inserción. Las marcas láser del módulo de inserción y del aditamento para módulo de inserción deben coincidir.
- Los tornillos de conexión se deben apretar bien con la llave de pipa.
- Finalmente, con el tornillo adaptador, se fija el correspondiente tornillo para peroné al brazo de acoplamiento. Las ranuras del clavo evitan el montaje incorrecto.

Inserción del clavo

- El clavo para peroné montado en el arco de inserción se introduce en el espacio medular.
- El ajuste de rotación correcto del clavo es decisivo para la colocación de los dos tornillos de bloqueo proximales. Se deberá ajustar una ligera rotación externa.
- Para ello, se debe ajustar correctamente bajo control radioscópico y con una proyección a. p. la hendidura de la articulación tibioperoneoastragalina (vista de la mortaja con rotación interna de 15° de la pierna).
- Introducir a continuación el clavo hasta la profundidad correcta (zona de acoplamiento entre clavo y brazo de acoplamiento a la altura de la punta del peroné).

Nota:

- Si se ha ajustado correctamente la hendidura de la articulación tibioperoneoastragalina (representada en azul), los dos orificios del aditamento para módulo de inserción se deben proyectar a través de los dos orificios de bloqueo del clavo en una proyección a. p. .
- Se debe evitar que el arco inserción gire hacia adentro, ya que los tornillos podrían pasar por el borde tibial dorsal. Un ligero giro hacia afuera es aceptable.



Atornilladura A/P - Taladrado

Instrumental

 REF 09.20310.055
 Vaina de protección tisular 8.0/7.0 VITUS-FI

 REF 09.20310.060
 Guía de broca 7.0/2.8 mm VITUS-FI

 REF 09.20310.090
 Broca espiralØ 2.8 mm, con escala

- Primero se debe marcar la incisión cutánea con el trocar introducido en las guías del aditamento para módulo de inserción y practicar en ese punto una incisión puntual.
- Insertar la vaina de protección tisular y la guía de broca a través del orificio correspondiente del arco de inserción y colocarlas sobre el hueso.
- A continuación, se taladrará hasta la segunda cortical.
- La longitud necesaria del tornillo se puede medir en la escala de la broca.

Atornilladura A/P - Medición de la longitud de los tornillos Instrumental

REF 009.20310.125 Instrumento medidor de longitud VITUS-Fi, para tornillos de Ø 2.7 a 60 mm

- Otra opción es introducir el instrumento medidor de longitud a través de la vaina de protección tisular y desplazar la corredera hasta la segunda cortical.
- La longitud necesaria de los tornillos se podrá entonces leer en la escala del instrumento medidor de longitud.

Atornilladura A/P - Inserción de los tornillos Instrumental

REF 09.20310.120 Destornillador VITUS-Fi, hexagonal 2.5 mm

- Los dos tornillos A/P se enroscan a mano con el destornillador.
- Para no alterar los tendones peroneos, los tornillos deben sobresalir como máx. 1 o 2 mm de la cortical dorsal.
- La arandela modular fijada en el tornillo evita que se hunda la cabeza del tornillo.
- Si la vaina de protección tisular está colocada sobre el hueso, la marca del vástago del destornillador indica si la cabeza del tornillo entra en contacto con la cortical ventral.

Reducción de la fractura

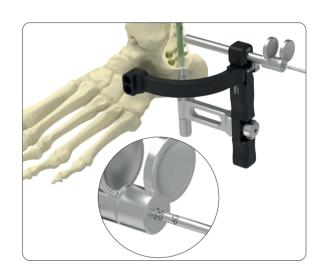
 Con los tornillos de bloqueo a. p. introducidos, todavía se puede corregir la reducción de la fractura, en particular para ajustar la longitud tibial.

Atornilladura lateral - Taladrado

Instrumental

 REF 09.20310.055
 Vaina de protección tisular 8.0/7.0 VITUS-Fi

 REF 09.20310.060
 Guía de broca 7.0/2.8 mm VITUS-Fi

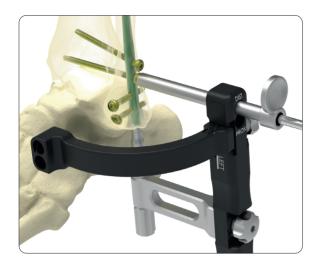

 REF 09.20310.090
 Broca espiral Ø 2.8 mm, con escala

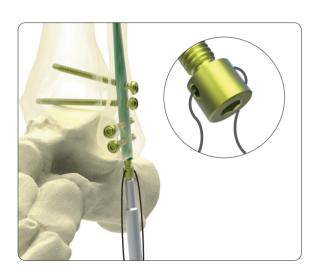
- La atornilladura lateral se lleva a cabo del mismo modo que la atornilladura a. p.
- También se deberá taladrar con la broca a través de la cortical lateral de la tibia.

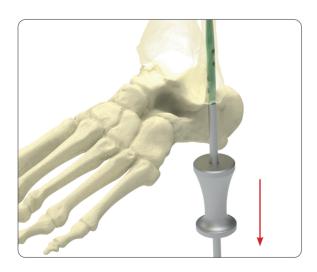
Nota:

El orificio superior del arco de inserción (identificado con "DIST") está destinado a la atornilladura lateral distal.

El orificio inferior del arco de inserción (identificado con "PROX") está previsto para la atornilladura lateral proximal.


Atornilladura lateral - Medición de la longitud de los tornillos


Instrumental


REF 009.20310.125 Instrumento medidor de longitud VITUS-Fi, para tornillos de Ø 2.7 a 60 mm

- Si la vaina de protección tisular está correctamente colocada sobre el hueso, la longitud de los tornillos se leerá en la escala de la broca.
- El instrumento medidor de longitud también permite determinar la longitud de los tornillos.

Atornilladura lateral - Inserción de los tornillos Instrumental

REF 09.20310.120 Destornillador VITUS-Fi, hexagonal 2.5 mm

- Los dos tornillos laterales se enroscan a mano con el destornillador.
- Si la vaina de protección tisular está correctamente colocada sobre el hueso, la marca del vástago del destornillador indica la profundidad correcta del tornillo (la arandela está en contacto con la cortical lateral).
- El arco de inserción se suelta del clavo y se retira soltando el tornillo adaptador para el clavo.

Nota:

Se recomienda realizar siempre la atornilladura lateral, independientemente de la inestabilidad mecánica de la sindesmosis.

Colocación del tornillo de cierre

Instrumental

REF 09.20310.120 Destornillador VITUS-Fi, hexagonal 2,5 mm

- Si el extremo distal del clavo ha penetrado demasiado profundamente el hueso, se puede usar el tornillo de cierre.
- Para asegurar la fijación del tornillo de cierre al destornillador durante la inserción, se pasa material de sutura por los orificios del tornillo de cierre.
- A continuación, se inserta el tornillo de cierre en el destornillador. Para impedir que se desplace, se sujeta con los extremos de las suturas.
- Por último, se introduce el tornillo de cierre en el extremo final del clavo y se retira el material de sutura.

Extracción del clavo

Instrumental - Opcional

REF 09.20310.145 Extractor para clavos

REF 14.30060.146 Martillo deslizante para extractor REF 03.20040.025 Destornillador, hexagonal 2.5 mm

- El tornillo de cierre y todos los tornillos de bloqueo (a excepción de un tornillo de bloqueo lateral) se extraen con el destornillador.
- El martillo deslizante se inserta sobre el extractor y, a continuación, se atornilla el extractor al clavo.
- El último tornillo de bloqueo lateral se extrae con el destornillador.
- Extraer el clavo golpeándolo ligeramente con el martillo deslizante.

Información del producto

Implantes

Tornillo para peroné VITUS-Fi Ø 3.0 mm

Número de artículo	Longitud
09.63030.110S	110 mm
09.63030.145S	145 mm
09.63030.180S	180 mm

Tornillo para peroné VITUS-Fi Ø 3.6 mm

Número de artículo	Longitud
09.63036.110S	110 mm
09.63036.145S	145 mm
09.63036.180S	180 mm

Número de artículo	Longitud
09.31635.010S	10 mm
09.31635.012\$	12 mm
09.31635.014\$	14 mm
09.31635.016S	16 mm
09.31635.018\$	18 mm
09.31635.020S	20 mm
09.31635.022S	22 mm
09.31635.024\$	24 mm
09.31635.026S	26 mm
09.31635.028\$	28 mm
09.31635.030S	30 mm
09.31635.032S	32 mm
09.31635.034S	34 mm
09.31635.040S	40 mm
09.31635.045S	45 mm
09.31635.050S	50 mm
09.31635.055S	55 mm
09.31635.060S	60 mm

Número

de artículo

09.63006.005S

Longitud

5 mm

Tornillo de bloqueo Ø 3.5 mm

• Diámetro de la rosca: 3.5 mm

• Diámetro menor: 2.7 mm

• Hexágono interior: 2.5 mm

Material: Ti6Al4V

Iornillo	ae	cierre	Ø	6.0	mm

• Hexágono interior: 2.5 mm

• Material: Ti6Al4V

VITUS-Fi

Instrumental

11.90018.150	Aguja de Kirschner Ø 1.8 mm, punta de trocar, L 150 mm, acero
09.20310.090	Broca espiral Ø 2.8 mm, con escala, conexión AO, L 210/180 mm
09.20310.220	Fresa medular VITUS-Fi Ø 6.1 mm, canulada, conexión AO
09.20310.230	Fresa medular VITUS-Fi Ø 3.1 mm, con escala, conexión AO
09.20310.240	Fresa medular VITUS-Fi Ø 3.7 mm, con escala, conexión AO
09.20310.055	Vaina de protección tisular 8.0/7.0 VITUS-Fi
T	
09.20310.060	Guía de broca 7.0/2.8 mm VITUS-Fi
Ī	
09.20310.065	Trocar VITUS-Fi Ø 2.6 mm
09.20310.245	Vaina de protección tisular 8.0/6.2 VITUS-Fi
09.20310.246	Casquillo reductor 6.0/2.0 VITUS-Fi
	Instrumento medidor de longitud VITUS-Fi,
09.20310.125	para tornillos de Ø 2.7 a 60 mm
09.20310.125	

Instrumental - Arco de inserción VITUS-Fi

09.20310.010 Brazo de acoplamiento para arco de

09.20310.015 Módulo de inserción VITUS-Fi para REF 09.20310.010

09.20310.020 Aditamento para módulo de inserción VITUS-Fi para REF 09.20310.015

09.20310.030 Tornillo adaptador para clavo VITUS-Fi

09.20310.035 Tornillo de conexión arco de inserción VITUS-Fi

Instrumental - Opcional

VITUS-Fi

Información de seguridad sobre la RM

Pruebas no clínicas han demostrado que los sistemas de clavos intramedulares de Marquardt Medizintechnik son condicionalmente compatibles con RM (MR Conditional) según la norma ASTM F2503. Un paciente con un implante de este tipo se puede examinar de forma segura en un sistema de RM que cumpla las siguientes condiciones:

- Abertura cilíndrica
- Campo magnético horizontal (B0)
- Gradiente de campo espacial inferior o igual a
 - 1,5 T: 23,45 T/m (2345 G/cm)
 - 3.0 T: 11.75 T/m (1175 G/cm)
- Exposición a campos de alta frecuencia (AF):
 - Excitación de AF: polarización circular (PC)
 - Bobina emisora de AF: bobina emisora de cuerpo entero
 - Bobina receptora de AF: bobina receptora de cuerpo entero
 - Tasa de absorción específica (SAR) promediada máxima admisible para todo el organismo: modo de funcionamiento normal, 2 W/kg.
 - Tiempo de exploración y de espera:
 - **1.5 T:** Valor medio de SAR de cuerpo entero de 2 W/kg durante **10min y 55s** de RF continua (una secuencia o serie de exposiciones consecutivas sin interrupción) seguida de un tiempo de espera de **10min y 55s** cuando se haya alcanzado este límite.
 - 3.0 T: Valor medio de SAR de cuerpo entero de 2 W/kg durante
 7min y 54s de RF continua (una secuencia o serie de exposiciones consecutivas sin interrupción) seguida de un tiempo de espera de
 7min y 54s cuando se haya alcanzado este límite.
- Se prevé que los clavos intramedulares produzcan un aumento máximo de temperatura a 6,2 °C a 1,5 T y e 6,5 °C a 3 T tras los tiempos de exploración mencionados
- Los implantes pueden generar artefactos de imagen. Para compensar los artefactos, puede ser necesario ajustar los parámetros de exploración. En pruebas no clínicas, los artefactos de imagen producidos por el aparato se extendían aproximadamente 83 mm des-de el borde del sistema de implante con una secuencia eco de espín y 65 mm con una secuencia de eco gradiente, respectivamente a 1,5 teslas.
- Pacientes con termorregulación no restringida en condiciones no controladas o pacientes contermorregulación restringida (todas las personas con termorregulación sistémica alterada o local reducida) en condiciones controladas (un médico o una persona especialmente formada puede reaccionar inmediatamente ante el estrés fisiológico relacionado con el calor).

Nota:

Una resonancia magnética entraña riesgo potencial para los pacientes con implantes metálicos. El campo electromagnético generado por un tomógrafo de RM puede interactuar con el implante metálico y provocar el desplazamiento del implante, el calentamiento del tejido cercano al implante, u otros efectos indeseados.

Dieter Marquardt Medizintechnik GmbH

Robert-Bosch-Straße 1 • 78549 Spaichingen, Germany Telefon +49 7424 9581-0 • Telefax +49 7424 501441 info@marquardt-medizintechnik.de • www.marquardt-medizintechnik.de